Ballistic recovery in III-V nanowire transistors
نویسندگان
چکیده
In recent years, a great deal of attention has been focused on the development of quantum wire transistors as a means of extending Moore’s law. Here the authors present results of fully three-dimensional, self-consistent quantum mechanical device simulations of InAs trigate nanowire transistor. The effects of inelastic scattering have been included as real-space self-energy terms. They find that the position of dopant atoms in these devices can lead to a reduction in the amount of scattering the carriers experience. They find that the combination of deeply buried dopant atoms and the high energy localization of polar optical phonon processes allow devices to recover their ballistic behavior even in the presence of strong inelastic phonon processes. © 2007 American Vacuum Society. DOI: 10.1116/1.2409987
منابع مشابه
Ballistic to Diffusive Crossover in III–V Nanowire Transistors
In this paper, we examine the crossover between 4 ballistic and diffusive transport in III–V nanowire transistors. 5 We find that at lower drain voltages the ballistic-to-diffusive 6 crossover occurs at channel lengths of approximately 2.3 nm at 7 room temperature. However, when we increase the drain voltage, 8 we find that the ballistic-to-diffusive crossover can be more than 9 nine times as l...
متن کاملElectron transport in multigate In x Ga 1-x as nanowire FETs: from diffusive to ballistic regimes at room temperature.
The III-V semiconductors such as In x Ga 1-x As (x = 0.53-0.70) have attracted significant interest in the context of low power digital complementary metal-oxide-semiconductor (CMOS) technology due to their superior transport properties. However, top-down patterning of III-V semiconductor thin films into strongly confined quasi-one-dimensional (1D) nanowire geometries can potentially degrade th...
متن کاملQuantum Interference Control of Ballistic Magneto- resistance in a Magnetic Nanowire Containing Two Atomic- Size Domain Walls
The magnetoresistance of a one-dimensional electron gas in a metallic ferromagnetic nanowire containing two atomic-size domain walls has been investigated in the presence of spin-orbit interaction. The magnetoresistance is calculated in the ballistic regime, within the Landauer-Büttiker formalism. It has been demonstrated that the conductance of a magnetic nanowire with double domain walls...
متن کاملDimensionality in metal-oxide-semiconductor field-effect transistors: A comparison of one-dimensional and two-dimensional ballistic transistors
Dimensionality in metal-oxide-semiconductor field-effect transistors: A comparison of one-dimensional and two-dimensional ballistic transistors" (2008). One-dimensional ͑1D͒ and two-dimensional ͑2D͒ metal-oxide-semiconductor field-effect transistors are compared using an approach based on the top-of-the-barrier ballistic transport model. The results for model devices show that 1D and 2D transistors...
متن کاملPhonon Limited Performance of III-V Nanowire Transistors
Abstract. We use a fully self-consistent three-dimensional quantum mechanical transport formalism to examine the performance of InAs based quantum wire transistors both in the ballistic limit and with phonon scattering included. We present a method for the inclusion of polar optical phonon scattering as a real-space self-energy term. We find that the ballistic performance of the devices can be ...
متن کامل